When to use LinkedList over ArrayList?
I've always been one to simply use:
List<String> names = new ArrayList<String>();
I use the interface as the type name for portability, so that when I ask questions such as these I can rework my code.
When should
LinkedList
be used over ArrayList
and vice-versa?Answer:
TL;DR
ArrayList
with ArrayDeque
are preferable in much more use-cases than LinkedList
. Not sure — just start with ArrayList
.LinkedList
and ArrayList
are two different implementations of the List interface. LinkedList
implements it with a doubly-linked list. ArrayList
implements it with a dynamically re-sizing array.
As with standard linked list and array operations, the various methods will have different algorithmic runtimes.
For
LinkedList<E>
get(int index)
is O(n/4) averageadd(E element)
is O(1)add(int index, E element)
is O(n/4) average
but O(1) whenindex = 0
<--- main benefit ofLinkedList<E>
remove(int index)
is O(n/4) averageIterator.remove()
is O(1) <--- main benefit ofLinkedList<E>
ListIterator.add(E element)
is O(1) <--- main benefit ofLinkedList<E>
Note: O(n/4) is average, O(1) best case (e.g. index = 0), O(n/2) worst case (middle of list)
For
ArrayList<E>
get(int index)
is O(1) <--- main benefit ofArrayList<E>
add(E element)
is O(1) amortized, but O(n) worst-case since the array must be resized and copiedadd(int index, E element)
is O(n/2) averageremove(int index)
is O(n/2) averageIterator.remove()
is O(n/2) averageListIterator.add(E element)
is O(n/2) average
Note: O(n/2) is average, O(1) best case (end of list), O(n) worst case (start of list)
LinkedList<E>
allows for constant-time insertions or removals using iterators, but only sequential access of elements. In other words, you can walk the list forwards or backwards, but finding a position in the list takes time proportional to the size of the list. Javadoc says "operations that index into the list will traverse the list from the beginning or the end, whichever is closer", so those methods are O(n/4) on average, though O(1) for index = 0
.ArrayList<E>
, on the other hand, allow fast random read access, so you can grab any element in constant time. But adding or removing from anywhere but the end requires shifting all the latter elements over, either to make an opening or fill the gap. Also, if you add more elements than the capacity of the underlying array, a new array (1.5 times the size) is allocated, and the old array is copied to the new one, so adding to an ArrayList
is O(n) in the worst case but constant on average.
So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an
ArrayList
is technically faster, but unless you're doing something really performance-sensitive, you shouldn't worry about this -- they're both constants.)
The main benefits of using a
LinkedList
arise when you re-use existing iterators to insert and remove elements. These operations can then be done in O(1) by changing the list locally only. In an array list, the remainder of the array needs to be moved (i.e. copied). On the other side, seeking in a LinkedList
means following the links in O(n), whereas in an ArrayList
the desired position can be computed mathematically and accessed in O(1).
Another benefit of using a
LinkedList
arise when you add or remove from the head of the list, since those operations are O(1), while they are O(n) for ArrayList
. Note that ArrayDeque
may be a good alternative to LinkedList
for adding and removing from the head, but it is not a List
.
Also, if you have large lists, keep in mind that memory usage is also different. Each element of a
LinkedList
has more overhead since pointers to the next and previous elements are also stored. ArrayLists
don't have this overhead. However, ArrayLists
take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.
The default initial capacity of an
ArrayList
is pretty small (10 from Java 1.4 - 1.8). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you're going to add a lot of elements, construct the ArrayList
with a higher initial capacity.
http://stackoverflow.com/questions/322715/when-to-use-linkedlist-over-arraylist